Othello/Reversi using Game Theory techniques

Parth Parekh
Ujjit Singh Bhatia
Kushal Sukthankar
Othello

- **Rules**
 - Two Players (Black and White)
 - 8x8 board
 - Black plays first
 - Every move should ‘Flip’ over at least one opponent disk
 - Goal: Maximize ones disks

- **Board (starting position)**
Technical Description

• Two-player deterministic zero-sum game with perfect information.
• Game tree size is approximately 10^{56}.
• State space size (legal positions) is approximately 10^{28}.
• Branching factor is approximately 10.
• Max move length is 60.
Our AI players

• Random
• Absolute minimax
• Positional minimax
• Mobility minimax
• Boosting player
• Q-learning player
Heuristics-based players

• Minimax
 • The minimax algorithm with alpha-beta pruning was used to determine which move was optimal given the evaluation function.

• Three Heuristics based players created
 • Positional
 • Mobility
 • Absolute
Human Strategies

• Positional
 • Maximize its own valuable positions (such as corners and edges) while minimizing its opponent’s valuable positions.
 • Evaluation Function:

\[w_{a1}v_{a1} + w_{a2}v_{a2} + \ldots + w_{a8}v_{a8} + \ldots + w_{h8}v_{h8} \]

\(w_i \) is +1, -1 or 0 if the square is occupied by player, opponent or empty

• Weights

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>-20</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>-20</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>-20</td>
<td>-50</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-50</td>
<td>-20</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>-2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>-20</td>
<td>-50</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-2</td>
<td>-50</td>
<td>-20</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
<td>-20</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>-20</td>
<td>100</td>
</tr>
</tbody>
</table>
Human Strategies - 2

- Mobility
 - Number of Legal Moves a player can make in a particular position.
 - Maximize own mobility and minimize opponents mobility.
 - Corner square are important in mobility.
 - Evaluation Function:

\[
10 \left(c_{player} - c_{opponent} \right) + \frac{m_{player} - m_{opponent}}{m_{player} + m_{opponent}}
\]

Where, c is corner squares, m is the mobility.
Human Strategies -3

• Absolute
 • Maximize ones own disks
 • Evaluation Function:

\[n_{player} - n_{opponent} \]
Game Phases

• An Othello game can be split into three phases where strategies can differ:
 • Beginning
 • First 20 to 25 moves
 • Middle
 • End
 • Last 10 to 16 moves
• Usually heuristic players use Positional/Mobility for beginning and middle phases. Then switch to Absolute for the end phase
Performance

- Positional: 78
- Mobility: 22

- Mobility: 67
- Absolute minimax: 33

- Positional: 91
- Absolute minimax: 9

- Mobility: 67
- Absolute minimax: 33
Q-Learning

• The Q learning player is a reinforcement learning based player.
• Q learning tries to learn the function Q(s,a) to find the optimal policy.
• The Q function is defined as:
 • “The reward received upon executing action a from state s, plus the discounted value of rewards obtained by following an optimal policy thereafter”
Q-Learning

• In this system, rewards are defined as follows:
 • Wins gets 1 point, Draw gets 0 and Loss gets -1.
• We then save the learned Q information using a Neural Network since the state space is too large and we need a compact way of storing this data.
Q-Learning

- For all states \(s \) and all actions \(a \): initialize \(Q(s, a) \) to an arbitrary value.
- Repeat (for each trial)
 - Initialize the current state \(s \)
 - Repeat (for each step of trial)
 - Observe the current state \(s \)
 - Select an action \(a \) using a policy
 - Execute action \(a \)
 - Receive an immediate reward \(r \)
 - Observe the resulting new state \(s' \)
 - Update \(Q(s, a) \)
Q-Learning

- Performance of Q-Learning against other simple AI – win margins graph
Q-Learning

- There is a problem – how to save the Q values learnt during a set of trials across sessions.
- Using a simple look-up table will be very time consuming and as more and more state-space is explored, there is a data explosion and it becomes impossible to store it.
- So we can simply get the Q value for the action which gets the maximum value to play.
Boosting

• General method of converting rough rules of thumb into highly accurate prediction rule

• Technically:
 • Assume given “weak” learning algorithm that can consistently find classifiers (“rules of thumb”) at least slightly better than random, say, accuracy 55% (in two-class setting)
 • Given sufficient data, a boosting algorithm can provably construct single classifier with very high accuracy, say, 99%
Weak Learners

- **Frontier**
 - The discs which have many empty neighboring squares are frontier. They increase opponents mobility.

- **Parity**
 - Playing last into each region gives best results.

- **Edge (Stable)**
 - A disc placed on a corner square cannot be flipped. Discs are stable if surrounding disks are stable.

- **Absolute**
 - Sometimes maximizing ones own disks gives best results
Weak Learners -2

- Evaporation
 - The fewer the disk the payer has, the greater his mobility
- Mobility
 - Reducing number of available moves for opponent increases chances he will make a bad move
- Positional
- Positional-2
 - Gain control of good squares and avoid bad.
AdaBoost Algorithm

D_t : Distribution for m Weak Learners

Initialize $D_1(i) = 1/m$

For every sample, given D_t & h,

For every Weak Learner i,

$D_{t+1}(i) = \frac{D_t(i)}{Z_i} \ast e^{-\alpha_t}$ If move is correct

$= \frac{D_t(i)}{Z_i} \ast e^{\alpha_t}$ If move is wrong

Where,

Z_i is the Normalization Constant.

and α_t is small and positive
Training

• The algorithm played against itself over multiple games
• Each phase of the game (Beginning, Middle and End) had a different distribution
• The winning distributions were saved and used for the next game
Distribution

[Graph showing the distribution of weights for different weak learners, with categories such as Frontier, Parity, Edge, Absolute, Evaporation, Mobility, Positional 1, Positional 2, and lines for Begin, Mid, and End.]
Performance of Boosting

Win %

Opposite Player

Random
Absolute Minimax
Mobility
Positional
Boosting v/s Q-Learning

- Q-learning Wins: 67
- Boosting Wins: 28
- Draw: 5

Total: 100
Papers

• Reinforcement Learning and its Application to Othello
 -- Nees Jan van Eck, Michiel van Wezel

• Using AdaBoost to Implement Chinese Chess Evaluation Functions
 -- Chuanqi Li

• Using a Support Vector Machine to learn to play Othello
 -- Daniel Karavolos